Tag Archives: sustainability

Baltimore’s Sustainability Report

Baltimore’s Mayor Stephanie Rawlings-Blake on April 16, 2011, stood up at the city’s Druid Hill Park Conservatory to announce the release of the 2010 Annual Sustainability Report.  This “yearly accountability tool to track Baltimore’s towards improving the economic, social, and environmental sustainability” was the city’s second such report, a product of the Baltimore Office of Sustainability.

Baltimore defines sustainability as “meeting the current environmental, social, and economic needs of our community without compromising the ability of future generations to meet these needs.”  This is deceptively similar to the often quoted formulation of the United Nations’ Brundtland Commission.  Our Common Future, the Commission’s 1987 report, asserted that “Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”  The concept of needs was explained with particular priority of concern for the world’s poor.  Our ability to meet needs was represented as limited by our social organization and technology as well as environmental constraints.

Read literally, Baltimore’s idea of sustainability differs in two possibly controversial ways from conventional usage. First, development—meaning steady increase of living standards and economic activity—is not mentioned.  Second, the needs that future generations will want to meet seemingly are presumed not to differ from ours today.  But perhaps, for Baltimore’s sustainability assessors, development is a fundamental need.

Baltimore's sustainability goals

In any case, the report is structured around 29 specific goals in seven clusters aimed at enhancing the city’s sustainability. Some of the goals are quite specific (for example, reducing greenhouse gas emissions by 15% by 2015), but most are open ended.  And with the possible exception of supporting local business, every goal is crucially linked to the region’s public works infrastructure, although infrastructure is cited explicitly as a contributing resource for only about one-third.

Infrastructure Service Life as a Matter of Sustainability

The word is everywhere.  People are talking about sustainability, but what does it really mean?  We want sustainable growth, sustainable development, sustainable communities.  In a recent blog posting, the Director of Sustainable Communities at the Natural Resources Defense Council admitted with remarkable candor about the latter topic, “even a lot of environmentalists don’t quite know what to make of the phrase.” 

Most people would probably agree that not using up all available resources needed for life has something to do with what “sustainability” signifies.  Physicists, chemists, and biologists can define with some precision the oxygen, water, and food, required by a group of organisms for a particular period of time, and the quantity of waste products they will produce.  For humans, their communities and their civilizations, there is certainly a lot more to it.  Our population, our history, and our ideas continue to grow, increasing our demands on an expanding range of resources. 

The American Society of Civil Engineers (ASCE) tried to cover everything by defining sustainability as “a set of environmental, economic, and social conditions in which all of society has the capacity and opportunity to maintain and improve its quality of life indefinitely without degrading the quantity, quality, or availability of natural, economic, and social resources.”  Improving quality of life “indefinitely” with no degradation of resources sets the bar quite high.

The Brundtland Commission took a more modest perspective, defining sustainable development as “…development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”  If one considers that our concept of “needs” has evolved over time, along with our technology and other capabilities to meet our needs, then the Brundtland criterion is considerably less stringent than ASCE’s.   As we look to more distant generations, we necessarily have less confidence that their concept of their own needs will be similar to ours.  Although some people will judge it to be technological hubris, we also are inclined to presume that these future generations will find new ways to meet whatever those needs are. 

The idea of discounting the significance of the more distant future is fundamental to the benefit-cost and cost-effectiveness analysis practices.  The practices, developed primarily in the middle decades of the 20th Century, are now widely used to assess the wisdom of decisions involving expending resources to obtain services or other benefits over a period of years.  These capital investment decisions—for example, to build infrastructure facilities—certainly have the capacity to foreclose future options.

A crucial assumption in any such analysis is the discount rate, usually expressed on an annual basis, representing the decline in value of resources that are made available or used at some future time, as compared to their value today.   For a simple example, many people would readily accept the idea that being given $98 today is preferable to the promise of $100 to be received one year hence.  If the proposition is $90 today versus $100 next year, more people may be willing to wait.  These examples represent discount rates of 2% and 10% respectively.  The discount rate used in any particular analysis reflects economic conditions and analyst’s and investors’ expectations about the future.  Higher discount rates imply less confidence and a requirement that the initial investment should more quickly become profitable.  (An interesting footnote: Comparisons of the value of the goods traded by the Dutch to purchase Manhattan from the Native Americans in 1626 to the current assessed value of the real estate suggests an annual increase of 5 to 6%.  It seems unlikely that Peter Minuet could have imagined what would become of the island.)

What can this tell us about understanding sustainability?  If we imagine that life will carry on more or less smoothly for some time, we might apply a low discount rate, perhaps 2% annually, in deciding whether or not to invest in infrastructure.  The discounting calculations would tell us that benefits accruing to a new investment more than 160 years from now would have a present worth less than 5% of their future amount.  If a human generation is about 20 years, we might then conclude that any long-term benefits that will not be realized until the 9th generation after we make the investment and building the facility are not worth much.  If the discount rate is 5%, fewer than 4 generations (perhaps 50 years) are needed.  With a discount rate of 10%, it takes about 30 years to reach the point that returns promised further in the future may not be influential on our decisions today. 

In other words, it may not make much sense to try to think beyond our grandchildren when it comes to sustainability.  Consider this: the initial demonstrations of transistor technology occurred in the mid-1940s, when I was a toddler.  Only a few years earlier, ENIAC I was developed as the first modern computer, using some 17,000 vacuum tubes.  Who then would or could have imagined the microchip and digital computers—not to mention cell phones—my grandchildren today take for granted. 

Perhaps it is only coincidence, but designers of bridge typically assume their structures will last about 50 to 70 years; for highway pavements, the numbers are 30 to 35 years.  Regardless of such assumptions, most of the people responsible for managing the nation’s infrastructure strive to get as many years of service as possible before a facility must be substantially refurbished or replaced.  Only seldom do public-sector owners of infrastructures make provisions at the beginning of the service life to ensure that funds are available to do the right thing at the end.

If we want our infrastructure systems to be sustainable and to serve as a basis for sustainable communities, such a management strategy may be counterproductive.  Long service lives discourage adoption of new technology and responsiveness to changes in users’ demands and society’s values.  Long-lived infrastructures fix the patterns of land development, social and economic activity, and perceptions of spatial relationships on the regions they serve.  Anecdotal evidence suggests we might be better of planning that infrastructures should be replaced, substantially renovated, repurposed, or retired no more than 3 generations after they are initially constructed.  Where rapid changes are occurring in economic conditions (for example, population growth in Phoenix or shrinkage in Detroit) or the technology (electricity generation and control, for example, as compared to municipal waste disposal), the lifetimes should be much shorter.

Seattle’s Alaskan Way Viaduct, for example, an elevated highway constructed to carry traffic past the city’s downtown core, was completed in 1953.  Over the years since it was built, traffic levels and truck sizes and weights had grown to levels that exceeded what the original designers had in mind; the structure was effectively obsolete.  Replacement would have been costly and very disruptive for the region’s highway users and the Viaduct’s neighbors. 

It was the 2001 Nisqually earthquake that moved Seattle finally to declare an end to the structure’s useful life.  The Viaduct was seriously damaged; sections had to be closed for a time. Repairs were made, but much of the public understood that more would need to be done.  It nevertheless took strong political leadership to effect the Viaduct’s replacement—with a tunnel—initiated in 2011.

The now-infamous The Fukushima I Nuclear Power Plant in Japan, first commissioned in 1971, uses “Generation II” technology.  Newer “Generation II” plants have better safety features.  Because nuclear plants are very expensive to build, reducing their allowable service would significantly raise the hurdle for establishing feasibility of a new plant but might also reduce the risk such infrastructures can pose for their neighbors.

There are many more examples that might be given of infrastructures destroyed or removed before the time envisioned by their builders and operators.  Certainly many elements of any particular piece of infrastructure are likely to remain useful beyond the 3- to 5-decade life implied by sustainability considerations.  However, viewing these elements as evidence of overinvestment and designing to ensure that infrastructures can be salvaged, recycled, or put to other uses would be important steps to improved sustainability.

Infrastructure Maintenance and Sustainability

Infrastructure needs maintenance; there’s no escaping it.  Storm-water drains get clogged with trash and debris; they must be cleaned out.  Steel bridges must be repainted from time to time to keep corrosion at bay.  If the joints and cracks in pavement are not kept sealed, water seeps into the soils underneath the slab and erodes the road’s load-carrying capacity.  Water purification filters must periodically be cleaned to keep doing their job.  Burned-out lights must be replaced. When a meter breaks, a guardrail is destroyed, or a pipe cracks, it must be fixed, patched, or replaced.  Failure to perform needed maintenance diminishes infrastructure’s performance or reduces its service life or both.

While maintenance is important—indeed crucial—it is often neglected.  Day-to-day maintenance activities have not the scale and scope to attract and hold people’s attention the way new construction does.  Politicians do not get to cut ribbons and shake hands when maintenance is successfully completed.  When budgets are tight or workloads are heavy, it too often seems easy to put off maintenance without immediately serious consequences.  It is often easier for infrastructure managers to find resources for repairs and replacements than for normal maintenance and preservation efforts.  This problem of maintenance is ubiquitous and seemingly unavoidable.

We should know better. We have those old sayings: “A stitch in time saves nine.”  “For want of a nail” to shoe the king’s horse, the war and kingdom are lost. Deferring and neglecting maintenance increase the rate of wear and tear on infrastructures, increase the chances of an early breakdown.  The costs of premature repairs and replacements exceed what it would have cost to do the maintenance.  Infrastructure professionals speak of the “life cycle cost” of infrastructure, the total of all spending required to build and operate facilities to provide the services we want for an expected number of years; neglecting maintenance almost inevitably is more costly.  “Pay me now or pay me later.”

Knowing that our tendency is toward neglect, we try to design and construct facilities that need as little maintenance as possible.  It may be argued that this strategy increases life-cycle costs, for example when labor is abundant or capital is scarce, but human nature makes it a wise one.  This then is the first step toward sustainable infrastructure: it should not require much care.

While maintenance requirements may be minimized, it is unlikely they can be altogether eliminated for most infrastructures.  The second step toward sustainability is to ensure that required maintenance is carried out.  This is a matter of social and institutional relationships.  Roman roads and aqueducts were kept up through military supervision under strong central government control. A monastic clergy served the function very well for the Roman Catholic Church’s network of European cathedrals and shrines during the Middle Ages and Renaissance. The Balinese water temples have successfully maintained the structures and operating rules safeguarding rice production on the Indonesian island.  The demands many universities make of major donors, that anyone wishing to support construction of a new building must also be willing to donate funds to endow maintenance of that building and its grounds is a modern adaptation of such practices.

But even with proper maintenance, infrastructures age and components wear with usage.  Earthquakes, storms, and evolving patterns of use, while possibly anticipated in general, may cause unpredictable specific damage at unpredicted times.  The third step toward truly sustainable infrastructure then is this: it must be possible to fix it quickly and with relative ease when it fails.  The designers of San Francisco’s Bay Area Rapid Transit, for example, recognizing the risk that seismic activity might shift the soil and rock through which tunnels were built, arranged for excavation of larger chambers where a tunnel crossed a fault line, to allow tacks to be quickly realigned following an earthquake. 

In short, sustainable civilization requires the support of sustainable infrastructure. Sustainable infrastructure (1) needs little care, (2) is well cared for, and (3) is fixable.

Reflection on Doing More With Less

Political discourse has no shortage of empty or misleading catchphrases.  A particularly popular one is that we must “do more with less.”

It has bipartisan support.  New York’s Attorney General Andrew Cuomo, speaking as a Democratic gubernatorial candidate, was quoted, “We’re going to have to change our orientation in this state, and how can we do more with less. You know, every family, every business, has had to do more with less.” (Newsday; October 30, 2010) Louisiana’s Republican Governor Bobby Jindal (Business Exchange; December 06, 2010) in an interview on Political Capital With Al Hunt said “We have cut higher education by about 4.5 percent. We’re all going to have to do more with less.” 

It’s not only the politicians who say it, of course.  As the recession deepened in 2008 and 2009 and budgets came under pressure, employee’s across the private sector were told what National Public Radio’s Chana Joffe-Walt termed “four familiar words: Do more with less.” (Morning Edition; February 26, 2009)

It sounds good, conjuring up thoughts of waste reduced and fat trimmed.  But anyone who is old enough to remember when airlines provided legroom even in coach class knows that what is doing more for some can mean getting less for others. 

In an article in Forbes magazine, innovation specialist Scott Anthony had a sensible perspective. When you are told to cut your costs, you cannot really do more.  Instead, you focus on doing only what is absolutely necessary to sell your product and figure out what the customer is willing to sacrifice. (“Creative Disruption: Doing More with Less” February 26, 2009)

Anthony writes that there are three basic categories of performance objectives; (1) functional objectives relating to product performance and reliability, like provide a smooth ride or deliver safe-to-drink water on demand; (2) emotional objectives associated with the influence a product has on how customer feel about themselves, for example choosing “the best that money can buy” or opting for frugality; and (3) social objectives associated with how customers perceive others feel about them, seeking for instance to demonstrate solidarity with a group or to impress people.

When it comes to infrastructure, many people lose sight of emotional and social objectives, and they generally view even functional objectives very narrowly.  

Take our public water supply, for example. We take for granted that abundant, safe water is available at the turn of the tap.  Occasional lapses occur: a broken water main can flood a street, force residents of an area to boil their drinking water and, in the aftermath, make faucets run muddy for a time.  Bacterial contamination of two purification plants serving the Milwaukee area sickened thousands and drew international attention in April, 1993.  For the most part though, water is reliably and inexpensively available on demand and it meets quality standards set to ensure public health. (Despite improvements made in recent years, this is still not the case for a notable fraction of the world’s population.  The United Nations World Health Organization estimates 13% of world population lacks any safe drinking water source, piped or otherwise.)

Nevertheless, sales of bottled drinking water in the United States total about $11 billion annually and continue to grow.  People buy it because they think it is safer or tastes better than what comes from the tap.  They buy it because the like the look of the bottle or the idea that it is imported.  They buy it because they identify with the celebrities paid to endorse a brand.  According to water expert Peter H. Gleick we consume 30 gallons per person annually. (Bottled and Sold: The Story Behind Our Obsession with Bottled Water 2010)  The marketers have figured out how to give consumers more than the bare-bones minimum of public infrastructure service.

Roman engineer and architect Marcus Vitruvius Pollio wrote that a city’s infrastructure—for him,  public buildings, defensive walls and towers, and shrines and temples—should all be built with strength, utility, grace.  (De architectura, Book 1, first century BCE)  Pressed time and again to “do more with less,” we have lost much of the grace or beauty in infrastructure and, I fear, some of the utility and strength.